دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: سری: ISBN (شابک) : 9783658362942, 9783662443064 ناشر: سال نشر: 2022 تعداد صفحات: 106 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 10 مگابایت
در صورت تبدیل فایل کتاب Data Science - Analytics and Applications(2022) [] [9783658362959] به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب علم داده - تجزیه و تحلیل و برنامه های کاربردی (2022) [] [9783658362959] نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
علم داده - تجزیه و تحلیل و برنامه های کاربردی (2022) [] [9783658362959]
Data Science - Analytics and Applications(2022) [] [9783658362959]
Preface Data science & AI depend on smart ecosystems to provide society with innovative solutions Data boost industry-academia link Organization Contents PART 1 RESEARCH TRACK German Abstracts Full Papers - Peer Reviewed Predictive Maintenance and Hyperparameter Optimization in the Industrial Setting 1 Evaluation of Hyperparameter-Optimization Approaches in an Industrial Federated Learning System I. INTRODUCTION II. ALGORITHMIC CHALLENGES AND FORMAL REQUIREMENTS FOR INDUSTRIAL ASSETS A. Problem Formulation B. Federated Learning C. Industrial Federated Learning III. HYPERPARAMETER OPTIMIZATION APPROACHES IN AN IFL SYSTEM IV. DATA, ALGORITHMS AND EXPERIMENTS A. Data B. Algorithms C. Experiments V. EXPERIMENTAL RESULTS REFERENCES 2 Towards Robust and Transferable IIoT Sensor based Anomaly Classification using Artificial Intelligence I. INTRODUCTION II. RELATED WORK A. IIoT Sensor Systems B. Time Series Classification III. IIOT MEASUREMENT SYSTEM A. Industrial Asset B. Sensor Measurement System C. Machine Learning System and Deployment D. Model Dissemination and Requirements IV. PROPOSED MACHINE LEARNING PIPELINE A. End-to-End-Approach: ROCKET. V. MEASUREMENT SETUP AND DATA SET DESCRIPTION VI. MACHINE LEARNING EXPERIMENTS VII. EXPERIMENTAL RESULTS AND CONCLUSION VIII. CONCLUSION AND FUTURE WORK REFERENCES 3 Data-driven Cut-off Frequency Optimization for Biomechanical Sensor Data Pre-Processing I. INTRODUCTION II. METHODS A. The FcOpt method B. Evaluation III. RESULTS A. FcOpt sampling rate robustness B. FcOpt temporal accuracy evaluation IV. DISCUSSION V. CONCLUSION ACKNOWLEDGMENT REFERENCES Deep Learning based Anomaly Detection and Scene Classification 4 A Low-Complexity Deep Learning Framework For Acoustic Scene Classification I. INTRODUCTION II. THE LOW-COMPLEXITY DEEP LEARNING FRAMEWORK PROPOSED A. Our baseline B. Ensemble of multiple spectrogram inputs C. Model compression methods applied to the CNN-7 network III. EVALUATION SETTING A. TAU Urban Acoustic Scenes 2020 Mobile, the Development [31] and Evaluation [32] datasets (DCASE 2021 Task1A) B. Deep learning framework implementation C. Metric for evaluation D. Optimize the proposed framework by evaluating factors of time length and data augmentation IV. EXPERIMENTAL RESULTS AND DISCUSSION A. Performance comparison between DCASE baseline and the CNN-7 baseline with or without using model compression methods B. Effect of time length, data augmentation, spectrogram input C. Evaluate ensemble of different spectrogram inputs D. Compare with the state-of-the-art systems V. CONCLUSION ACKNOWLEDGEMENT REFERENCES 5 Anomaly Detection in Medical Imaging - A Mini Review I. INTRODUCTION II. METHOD III. RESULTS IV. DISCUSSION ACKNOWLEDGMENT REFERENCES 6 Deep Learning Frameworks Applied For Audio-Visual Scene Classification I. INTRODUCTION II. DEEP LEARNING FRAMEWORKS PROPOSED A. Audio-based deep learning frameworks B. Visual-based deep learning frameworks III. EVALUATION SETTING A. TAU Urban Audio-Visual Scenes 2021 dataset [13] (Development and Evaluation datasets) B. Deep learning framework implementation C. Metric for evaluation D. Late fusion strategy for multiple predicted probabilities IV. EXPERIMENTAL RESULTS AND DISCUSSION A. Analysis of audio-based deep learning frameworks for scene classification B. Analysis of visual-based deep learning frameworks for scene classification C. Combine both visual and audio features for scene classification D. Early detecting scene context E. Compare with the state-of-the-art systems V. CONCLUSION ACKNOWLEDGEMENT REFERENCES Security and Data Integrity in Machine Learning 7 Toward Applying the IEC 62443 in the UAS for Secure Civil Applications I. INTRODUCTION A. Related Work II. APPLYING IEC 62443 SECURITY STANDARD IN UAS A. Assets Identification B. Identify Security Zones C. Risk Analysis D. Risk Evaluation and Security Target Estimation E. Apply Security Requirements and Map FRs with STRIDE III. CONCLUSION AND FUTURE WORK IV. ACKNOWLEDGEMENT REFERENCES 8 IAIDO: A Framework for Implementing Integrity-Aware Intelligent Data Objects I. INTRODUCTION II. RELATED WORK III. PRELIMINARIES IV. EXPERIMENTAL EVALUATION A. User-Defined Experimental Constraints B. food_info Intelligent Constraints C. food_info Sub-Class Intelligent Constraints D. Experimental Results E. Reasoning with Quarantine V. CONCLUSIONS VI. FUTURE WORK REFERENCES Natural Language Processing based Optimization Methods 9 Reducing Operator Overload with Context-Sensitive Event Clustering I. INTRODUCTION II. RELATED WORK III. METHODOLOGY A. EventType2Vec B. Agglomerative Clustering C. Co-Occurrence Detection IV. EVALUATION AND RESULTS A. Dataset and Preprocessing B. Clustering C. Process Mining VI. CONCLUSION ACKNOWLEDGEMENTS REFERENCES 10 Dynamic Review-based Recommenders I. INTRODUCTION II. RELATED WORK III. DYNAMIC REVIEW-BASED RECOMMENDERS (DRR) A. Dynamic Model of Review Sequences B. Dynamic Model of Review Content C. Combining temporal and summary representations D. Rating Model E. DRR Loss function IV. CAUSALITY V. EXPERIMENTS AND RESULTS VI. CONCLUSION AND FEATURE WORK ACKNOWLEDGMENT REFERENCES INDUSTRY TRACK Abstracts Provided Papers - Non Reviewed 11 Beyond Desktop Computation: Challenges in Scaling a GPU Infrastructure I. INTRODUCTION II. CLOUD VS. ON-PREMISES COMPUTING A. Costs B. GDPR C. Other issues with Cloud Resources III. REQUIREMENTS TO OUR ON-PREMISES INFRASTRUCTURE IV. INFRASTRUCTURE ARCHITECTURE V. CLUSTER SETUP VI. FUTURE ADAPTIONS VII. DISCUSSION AND CONCLUSION REFERENCES 12 Strategic Approaches to the Use of Data Science in SMEs I. INTRODUCTION II. DATA SCIENCE MATURITY MODEL III. MULTI-CASE STUDY: DATA SCIENCE IN SMES IN SALZBURG IV. RESULTS A. SMEs B. Universities C. Government V. CONCLUSION REFERENCES 13 Minimal-Configuration Anomaly Detection for IIoT Sensors I. INTRODUCTION II. INDUSTRIAL REQUIREMENTS AND DESIGN RATIONAL III. DATA SET CREATION IV. EXPERIMENTAL SETUP V. PRELIMINARY RESULTS VI. DISCUSSION REFERENCES 14 Flexible Systems to Reach High Security Levels in the Communication with Machines and in their Maintenance I. MOTIVATION II. TRUST LEVELS IN PRODUCTION ENVIRONMENTS III. SYSTEM ARCHITECTURE